Structure-Function of the Human WAC Protein in GABAergic Neurons: Towards an Understanding of Autosomal Dominant DeSanto–Shinawi Syndrome

Author:

Rudolph Hannah C.1ORCID,Stafford April M.1,Hwang Hye-Eun2,Kim Cheol-Hee2ORCID,Prokop Jeremy W.13,Vogt Daniel14ORCID

Affiliation:

1. Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA

2. Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea

3. Office of Research, Corewell Health, Grand Rapids, MI 49503, USA

4. Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA

Abstract

Dysfunction of the WW domain-containing adaptor with coiled-coil, WAC, gene underlies a rare autosomal dominant disorder, DeSanto–Shinawi syndrome (DESSH). DESSH is associated with facial dysmorphia, hypotonia, and cognitive alterations, including attention deficit hyperactivity disorder and autism. How the WAC protein localizes and functions in neural cells is critical to understanding its role during development. To understand the genotype–phenotype role of WAC, we developed a knowledgebase of WAC expression, evolution, human genomics, and structural/motif analysis combined with human protein domain deletions to assess how conserved domains guide cellular distribution. Then, we assessed localization in a cell type implicated in DESSH, cortical GABAergic neurons. WAC contains conserved charged amino acids, phosphorylation signals, and enriched nuclear motifs, suggesting a role in cellular signaling and gene transcription. Human DESSH variants are found within these regions. We also discovered and tested a nuclear localization domain that impacts the cellular distribution of the protein. These data provide new insights into the potential roles of this critical developmental gene, establishing a platform to assess further translational studies, including the screening of missense genetic variants in WAC. Moreover, these studies are essential for understanding the role of human WAC variants in more diverse neurological phenotypes, including autism spectrum disorder.

Funder

Spectrum Health-Michigan State University Alliance Corporation

Gerber Foundation and National Institutes of Health

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3