Reproductive Biology of Dry Grassland Specialist Ranunculus illyricus L. and Its Implications for Conservation

Author:

Kocot DawidORCID,Sitek EwaORCID,Nowak BarbaraORCID,Kołton AnnaORCID,Towpasz Krystyna

Abstract

Ranunculus illyricus, a component of xerothermic grasslands, is a declining species and deserves active conservation treatments in many countries preceded by studies on the biology of its reproduction. So far, our knowledge of R. illyricus, a species with two modes of reproduction, has been fragmentary. The purpose of the studies presented here was to describe the annual development cycle of R. illyricus with particular emphasis on the production of underground tuber clusters that serve as vegetative propagation. Based on three-year-long observations in an ex situ collection, the efficiency of vegetative propagation was estimated and compared with the efficiency of generative propagation. It was found that in 3 years the best clones could produce up to 57 progeny clusters followed by flowering specimens in the first season. Meanwhile, the high potential for generative reproduction was suppressed by many limitations including fruit setting, the germination capacity of seeds, seedling survival rate, and additionally, the first flowering plant was observed only in the third year. It seems that the efficiency of vegetative propagation of this species can be higher than the efficiency of generative propagation. Moreover, vegets bloomed in the first year after emergence, whereas the first plant of generative origin was observed to bloom only after 3 years. A large proportion of individuals of vegetative origin can negatively affect the genetic diversity of the population but their survival rate against competing plants is higher. To enhance the existing populations or to create new ones, it would be best to use plants derived from clonal propagation of genets carried out in ex situ conditions.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3