Development of a Spinal Cord Injury Model Permissive to Study the Cardiovascular Effects of Rehabilitation Approaches Designed to Induce Neuroplasticity

Author:

Wainman Liisa,Erskine Erin L.,Ahmadian Mehdi,Hanna Thomas Matthew,West Christopher R.

Abstract

As primary medical care for spinal cord injury (SCI) has improved over the last decades there are more individuals living with neurologically incomplete (vs. complete) cervical injuries. For these individuals, a number of promising therapies are being actively researched in pre-clinical settings that seek to strengthen the remaining spinal pathways with a view to improve motor function. To date, few, if any, of these interventions have been tested for their effectiveness to improve autonomic and cardiovascular (CV) function. As a first step to testing such therapies, we aimed to develop a model that has sufficient sparing of descending sympathetic pathways for these interventions to target yet induces robust CV impairment. Twenty-six Wistar rats were assigned to SCI (n = 13) or naïve (n = 13) groups. Animals were injured at the T3 spinal segment with 300 kdyn of force. Fourteen days post-SCI, left ventricular (LV) and arterial catheterization was performed to assess in vivo cardiac and hemodynamic function. Spinal cord lesion characteristics along with sparing in catecholaminergic and serotonergic projections were determined via immunohistochemistry. SCI produced a decrease in mean arterial pressure of 17 ± 3 mmHg (p < 0.001) and left ventricular contractility (end-systolic elastance) of 0.7 ± 0.1 mmHg/µL (p < 0.001). Our novel SCI model produced significant decreases in cardiac and hemodynamic function while preserving 33 ± 9% of white matter at the injury epicenter, which we believe makes it a useful pre-clinical model of SCI to study rehabilitation approaches designed to induce neuroplasticity.

Funder

Praxis, Blusson Integrated Cares Partnership

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3