Role of Persistent Organic Pollutants in Breast Cancer Progression and Identification of Estrogen Receptor Alpha Inhibitors Using In-Silico Mining and Drug-Drug Interaction Network Approaches

Author:

Zainab Bibi,Ayaz Zainab,Rashid Umer,Al Farraj Dunia A.,Alkufeidy Roua M.ORCID,AlQahtany Fatmah S.,Aljowaie Reem M.,Abbasi Arshad MehmoodORCID

Abstract

The strong association between POPs and breast cancer in humans has been suggested in various epidemiological studies. However, the interaction of POPs with the ERα protein of breast cancer, and identification of natural and synthetic compounds to inhibit this interaction, is mysterious yet. Consequently, the present study aimed to explore the interaction between POPs and ERα using the molecular operating environment (MOE) tool and to identify natural and synthetic compounds to inhibit this association through a cluster-based approach. To validate whether our approach could distinguish between active and inactive compounds, a virtual screen (VS) was performed using actives (627 compounds) as positive control and decoys (20,818 compounds) as a negative dataset obtained from DUD-E. Comparatively, short-chain chlorinated paraffins (SCCPs), hexabromocyclododecane (HBCD), and perfluorooctanesulfonyl fluoride (PFOSF) depicted strong interactions with the ERα protein based on the lowest-scoring values of −31.946, −18.916, −17.581 kcal/mol, respectively. Out of 7856 retrieved natural and synthetic compounds, sixty were selected on modularity bases and subsequently docked with ERα. Based on the lowest-scoring values, ZINC08441573, ZINC00664754, ZINC00702695, ZINC00627464, and ZINC08440501 (synthetic compounds), and capsaicin, flavopiridol tectorgenin, and ellagic acid (natural compounds) showed incredible interactions with the active sites of ERα, even more convening and resilient than standard breast cancer drugs Tamoxifen, Arimidex and Letrozole. Our findings confirm the role of POPs in breast cancer progression and suggest that natural and synthetic compounds with high binding affinity could be more efficient and appropriate candidates to treat breast cancer after validation through in vitro and in vivo studies.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3