IFNγ-Producing B Cells Play a Regulating Role in Infection-Mediated Inhibition of Allergy

Author:

Qiao Sai123ORCID,Peng Ying12,Zhang Chunyan12,Thomas Rony12,Wang Shuhe12,Yang Xi12ORCID

Affiliation:

1. Department of Immunology, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada

2. Department of Medical Microbiology and Infectious Diseases, Rady Max College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada

3. Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China

Abstract

The hygiene hypothesis suggests that some infections may inhibit the development of allergic diseases, but the mechanism remains unclear. Our previous study has shown that Chlamydia muridarum (Cm) lung infection can inhibit local eosinophilic inflammation induced by ovalbumin (OVA) through the modulation of dendritic cell (DC) and T cell responses in mice. In this study, we explored the role of B cells in the chlamydial-infection-mediated modulation of allergic responses. The results showed that adoptive transfer of B cells isolated from Cm-infected mice (Cm-B cells), unlike those from naïve mice (naïve B cells), could effectively inhibit allergic airway eosinophilia and mucus overproduction, as well as Th2 cytokine responses. In addition, total IgE/IgG1 and OVA-specific IgE/IgG1 antibodies in the serum were also decreased by the adoptive transfer of Cm-B cells. Intracellular cytokine analysis showed that B cells from Cm-infected mice produced higher levels of IFNγ than those from naïve mice. More interestingly, the inhibiting effect of adoptively transferred Cm-B cells on allergic reactions was virtually abolished by the simultaneous blockade of IFNγ using a monoclonal antibody. The results suggest that B cells modulated by chlamydial lung infection could play a regulatory role in OVA-induced acute allergic responses in the lung via the production of IFNγ. The results provide new insights into the targets related to the prevention and treatment of allergic diseases.

Funder

Canadian Institutes of Health Research

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3