Mimicking CA3 Temporal Dynamics Controls Limbic Ictogenesis

Author:

Caron DavideORCID,Canal-Alonso ÁngelORCID,Panuccio GabriellaORCID

Abstract

Mesial temporal lobe epilepsy (MTLE) is the most common partial complex epilepsy in adults and the most unresponsive to medications. Electrical deep brain stimulation (DBS) of the hippocampus has proved effective in controlling seizures in epileptic rodents and in drug-refractory MTLE patients. However, current DBS paradigms implement arbitrary fixed-frequency or patterned stimuli, disregarding the temporal profile of brain electrical activity. The latter, herein included hippocampal spontaneous firing, has been shown to follow lognormal temporal dynamics. Here, we present a novel paradigm to devise DBS protocols based on stimulation patterns fashioned as a surrogate brain signal. We focus on the interictal activity originating in the hippocampal subfield CA3, which has been shown to be anti-ictogenic. Using 4-aminopyridine-treated hippocampus-cortex slices coupled to microelectrode array, we pursue three specific aims: (1) address whether lognormal temporal dynamics can describe the CA3-driven interictal pattern, (2) explore the possibility of restoring the non-seizing state by mimicking the temporal dynamics of this anti-ictogenic pattern with electrical stimulation, and (3) compare the performance of the CA3-surrogate against periodic stimulation. We show that the CA3-driven interictal activity follows lognormal temporal dynamics. Further, electrical stimulation fashioned as a surrogate interictal pattern exhibits similar efficacy but uses less pulses than periodic stimulation. Our results support the possibility of mimicking the temporal dynamics of relevant brain signals as a straightforward DBS strategy to ameliorate drug-refractory epilepsy. Further, they herald a paradigm shift in neuromodulation, wherein a compromised brain signal can be recreated by the appropriate stimuli distribution to bypass trial-and-error studies and attain physiologically meaningful DBS operating modes.

Funder

European Union

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3