Abstract
With the rise of long-read sequencers and long-range technologies, delivering high-quality plant genome assemblies is no longer reserved to large consortia. Not only sequencing techniques, but also computer algorithms have reached a point where the reconstruction of assemblies at the chromosome scale is now feasible at the laboratory scale. Current technologies, in particular long-range technologies, are numerous, and selecting the most promising one for the genome of interest is crucial to obtain optimal results. In this study, we resequenced the genome of the yellow sarson, Brassica rapa cv. Z1, using the Oxford Nanopore PromethION sequencer and assembled the sequenced data using current assemblers. To reconstruct complete chromosomes, we used and compared three long-range scaffolding techniques, optical mapping, Omni-C, and Pore-C sequencing libraries, commercialized by Bionano Genomics, Dovetail Genomics, and Oxford Nanopore Technologies, respectively, or a combination of the three, in order to evaluate the capability of each technology.
Funder
Agence Nationale de la Recherche
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献