Continuous Physiological Monitoring of the Combined Exposure to Hypoxia and High Cognitive Load in Military Personnel

Author:

Temme Leonard A.1,Wittels Harrison L.2,Wishon Michael J.2,St. Onge Paul1,McDonald Samantha M.23,Hecocks Dustin2,Wittels S. Howard2456

Affiliation:

1. Army Aeromedical Research Laboratory, Fort Novosel, AL 36362, USA

2. Tiger Tech Solutions, Inc., Miami, FL 33140, USA

3. School of Kinesiology and Recreation, Illinois State University, Normal, IL 61761, USA

4. Department of Anesthesiology, Mount Sinai Medical Center, Miami, FL 33140, USA

5. Department of Anesthesiology, Wertheim School of Medicine, Florida International University, Miami, FL 33199, USA

6. Miami Beach Anesthesiology Associates, Miami, FL 33140, USA

Abstract

Military aviators endure high cognitive loads and hypoxic environments during flight operations, impacting the autonomic nervous system (ANS). The synergistic effects of these exposures on the ANS, however, are less clear. This study investigated the simultaneous effects of mild hypoxia and high cognitive load on the ANS in military personnel. This study employed a two-factor experimental design. Twenty-four healthy participants aged between 19 and 45 years were exposed to mild hypoxia (14.0% O2), normoxia (21.0% O2), and hyperoxia (33.0% O2). During each epoch (n = 5), participants continuously performed one 15 min and one 10 min series of simulated, in-flight tasks separated by 1 min of rest. Exposure sequences (hypoxia–normoxia and normoxia–hyperoxia) were separated by a 60 min break. Heart rate (HR), heart rate variability (HRV), and O2 saturation (SpO2) were continuously measured via an armband monitor (Warfighter MonitorTM, Tiger Tech Solutions, Inc., Miami, FL, USA). Paired and independent t-tests were used to evaluate differences in HR, HRV, and SpO2 within and between exposure sequences. Survival analyses were performed to assess the timing and magnitude of the ANS responses. Sympathetic nervous system (SNS) activity during hypoxia was highest in epoch 1 (HR: +6.9 bpm, p = 0.002; rMSSD: −9.7 ms, p = 0.003; SDNN: −11.3 ms, p = 0.003; SpO2: −8.4%, p < 0.0000) and appeared to slightly decline with non-significant increases in HRV. During normoxia, SNS activity was heightened, albeit non-significantly, in epoch 1, with higher HR (68.5 bpm vs. 73.0 bpm, p = 0.06), lower HRV (rMSSD: 45.1 ms vs. 38.7 ms, p = 0.09 and SDNN: 52.5 ms vs. 45.1 ms, p = 0.08), and lower SpO2 (−0.7% p = 0.05). In epochs 2–4, HR, HRV, and SpO2 trended towards baseline values. Significant between-group differences in HR, HRV, and O2 saturation were observed. Hypoxia elicited significantly greater HRs (+5.0, p = 0.03), lower rMSSD (−7.1, p = 0.03), lower SDNN (−8.2, p = 0.03), and lower SpO2 (−1.4%, p = 0.002) compared to normoxia. Hyperoxia appeared to augment the parasympathetic reactivation reflected by significantly lower HR, in addition to higher HRV and O2 relative to normoxia. Hypoxia induced a greater ANS response in military personnel during the simultaneous exposure to high cognitive load. The significant and differential ANS responses to varying O2 levels and high cognitive load observed highlight the importance of continuously monitoring multiple physiological parameters during flight operations.

Funder

Department of Defense, Defense Health Program, Military Operational Medical Research Program Joint Program Committee #5

Military Operational Research Program Aviation Mishap Prevention Program

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3