Renal Microcirculation Injury as the Main Cause of Ischemic Acute Kidney Injury Development

Author:

Kwiatkowska Ewa1,Kwiatkowski Sebastian2,Dziedziejko Violetta3,Tomasiewicz Izabela1,Domański Leszek1

Affiliation:

1. Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland

2. Department of Obstetrician and Gynecology, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland

3. Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland

Abstract

Acute kidney injury (AKI) can result from multiple factors. The main cause is reduced renal perfusion. Kidneys are susceptible to ischemia due to the anatomy of microcirculation that wraps around the renal tubules–peritubular capillary (PTC) network. Cortical and medullary superficial tubules have a large share in transport and require the supply of oxygen for ATP production, while it is the cortex that receives almost 100% of the blood flowing through the kidneys and the medulla only accounts for 5–10% of it. This difference makes the tubules present in the superficial layer of the medulla very susceptible to ischemia. Impaired blood flow causes damage to the endothelium, with an increase in its prothrombotic and pro-adhesive properties. This causes congestion in the microcirculation of the renal medulla. The next stage is the migration of pericytes with the disintegration of these vessels. The phenomenon of destruction of small vessels is called peritubular rarefaction, attributed as the main cause of further irreversible changes in the damaged kidney leading to the development of chronic kidney disease. In this article, we will present the characteristic structure of renal microcirculation, its regulation, and the mechanism of damage in acute ischemia, and we will try to find methods of prevention with particular emphasis on the inhibition of the renin–angiotensin–aldosterone system.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference112 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3