Affiliation:
1. Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
2. Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
3. Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
4. Laboratory of Soil Science, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
Abstract
Rice straw and stubble burning is widely practiced to clear fields for new crops. However, questions remain about the effects of fire on soil bacterial communities and soil properties in paddy fields. Here, five adjacent farmed fields were investigated in central Thailand to assess changes in soil bacterial communities and soil properties after burning. Samples of soil prior to burning, immediately after burning, and 1 year after burning were obtained from depths of 0 to 5 cm. The results showed that the pH, electrical conductivity, NH4-N, total nitrogen, and soil nutrients (available P, K, Ca, and Mg) significantly increased immediately after burning due to an increased ash content in the soil, whereas NO3-N decreased significantly. However, these values returned to the initial values. Chloroflexi were the dominant bacteria, followed by Actinobacteria and Proteobacteria. At 1 year after burning, Chloroflexi abundance decreased remarkably, whereas Actinobacteria, Proteobacteria, Verrucomicrobia, and Gemmatimonadetes abundances significantly increased. Bacillus, HSB OF53-F07, Conexibacter, and Acidothermus abundances increased immediately after burning, but were lower 1 year after burning. These bacteria may be highly resistant to heat, but grow slowly. Anaeromyxobacter and Candidatus Udaeobacter dominated 1 year after burning, most likely because of their rapid growth and the fact that they occupy areas with increased soil nutrient levels after fires. Amidase, cellulase, and chitinase levels increased with increased organic matter levels, whereas β-glucosidase, chitinase, and urease levels positively correlated with the soil total nitrogen level. Although clay and soil moisture strongly correlated with the soil bacterial community’s composition, negative correlations were found for β-glucosidase, chitinase, and urease. In this study, rice straw and standing stubble were burnt under high soil moisture and within a very short time, suggesting that the fire was not severe enough to raise the soil temperature and change the soil microbial community immediately after burning. However, changes in soil properties due to ash significantly increased the diversity indices, which was noticeable 1 year after burning.
Funder
Mahidol University
Thailand Science Research and Innovation
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Reference96 articles.
1. Effects from open rice straw burning emission on air quality in the Bangkok metropolitan region;Tipayarom;Sci. Asia,2007
2. Characterization of particulate matter emission from open burning of rice straw;Oanh;Atmos. Environ.,2011
3. Rice straw as a renewable energy source in India, Thailand, and the Philippines: Overall potential and limitations for energy contribution and greenhouse gas mitigation;Gadde;Biomass Bioenergy,2009
4. Office of Agricultural Economics (OAE) (2022, August 21). Agricultural Statistics of Thailand 2021. Centre for Agricultural Information, Office of Agricultural Economics (in Thai), 2021. Available online: https://www.oae.go.th/assets/portals/1/files/jounal/2565/yearbook2564.pdf.
5. Arunrat, N., and Pumijumnong, N. (2017). Practices for reducing greenhouse gas emissions from rice production in Northeast Thailand. Agriculture, 7.