Modeling the Resistance Evolution to Insecticides Driven by Lepidopteran Species Competition in Cotton, Soybean, and Corn Crops

Author:

Malaquias José B.ORCID,Ferreira Cláudia P.ORCID,Ramalho Francisco de S.ORCID,Godoy Wesley A. C.ORCID,Pachú Jéssica K. S.ORCID,Omoto CelsoORCID,Neto Dyrson de O. A.ORCID,Padovez Fernando E. O.ORCID,Silva Luciana BarbozaORCID

Abstract

Intra- and interspecific competition is considered a fundamental phenomenon in ecology. It acts as one of the most powerful selective forces that drives ecological diversity, the spatiotemporal distribution of organisms, fitness, and evolutionary aspects. Spodoptera frugiperda and Helicoverpa armigera are devastating pests and can co-occur in systems consisting of multiple agricultural crops and compete for food resources. Insecticide resistance in populations of these species has been a major threat to the sustainability of agroecosystems. No study to date has shown the effect of intra- and interspecific competition as a selective pressure agent on the evolution of insecticide resistance in lepidopteran pests in an experimental and theoretical way. Our study developed a parameterized computational model with experimental results for S. frugiperda and H. armigera competition. We simulated the behavior of heterozygous individuals with a competition capacity 100% equal to homozygous individuals resistant (100 RR) or susceptible to insecticides (00 RR), and intermediate between them (50 RR). Competition involving strains of these insect species can accelerate the evolution of their resistance to insecticides in agricultural crops. We found that competitive processes can result in a high probability of competitive exclusion for individuals with the susceptibility allele of these lepidopteran species. The results of this study are of paramount importance for understanding the impact of ecological factor competition on the evolution of insecticide resistance in lepidopteran pests, which until now has been neglected in these types of evolutionary dynamics studies.

Funder

São Paulo Research Foundation

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3