Abstract
The ongoing COVID-19 pandemic follows an unpredictable evolution, driven by both host-related factors such as mobility, vaccination status, and comorbidities and by pathogen-related ones. The pathogenicity of its causative agent, SARS-CoV-2 virus, relates to the functions of the proteins synthesized intracellularly, as guided by viral RNA. These functions are constantly altered through mutations resulting in increased virulence, infectivity, and antibody-evasion abilities. Well-characterized mutations in the spike protein, such as D614G, N439K, Δ69–70, E484K, or N501Y, are currently defining specific variants; however, some less studied mutations outside the spike region, such as p. 3691 in NSP6, p. 9659 in ORF-10, 8782C > T in ORF-1ab, or 28144T > C in ORF-8, have been proposed for altering SARS-CoV-2 virulence and pathogenicity. Therefore, in this study, we focused on A105V mutation of SARS-CoV-2 ORF7a accessory protein, which has been associated with severe COVID-19 clinical manifestation. Molecular dynamics and computational structural analyses revealed that this mutation differentially alters ORF7a dynamics, suggesting a gain-of-function role that may explain its role in the severe form of COVID-19 disease.
Funder
Romanian National Council for Higher Education Funding, CNFIS
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献