Abstract
Though AlphaFold2 has attained considerably high precision on protein structure prediction, it is reported that directly inputting coordinates into deep learning networks cannot achieve desirable results on downstream tasks. Thus, how to process and encode the predicted results into effective forms that deep learning models can understand to improve the performance of downstream tasks is worth exploring. In this study, we tested the effects of five processing strategies of coordinates on two single-sequence protein binding site prediction tasks. These five strategies are spatial filtering, the singular value decomposition of a distance map, calculating the secondary structure feature, and the relative accessible surface area feature of proteins. The computational experiment results showed that all strategies were suitable and effective methods to encode structural information for deep learning models. In addition, by performing a case study of a mutated protein, we showed that the spatial filtering strategy could introduce structural changes into HHblits profiles and deep learning networks when protein mutation happens. In sum, this work provides new insight into the downstream tasks of protein-molecule interaction prediction, such as predicting the binding residues of proteins and estimating the effects of mutations.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Shanghai Sailing Program
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献