Effect of an Oral Bivalent Vaccine on Immune Response and Immune Gene Profiling in Vaccinated Red Tilapia (Oreochromis spp.) during Infections with Streptococcus iniae and Aeromonas hydrophila

Author:

Monir Md ShirajumORCID,Yusoff Md Sabri MohdORCID,Zamri-Saad Mohd,Amal Mohammad Noor AzmaiORCID,Mohamad AslahORCID,Azzam-Sayuti MohamadORCID,Ina-Salwany Md YasinORCID

Abstract

Streptococcosis and aeromonasis inflicted by Streptococcus iniae and Aeromonas hydrophila, respectively, have affected tilapia industries worldwide. In this study, we investigated antibody responses and explored the mechanisms of protection rendered by an oral bivalent vaccine in red tilapia following challenges with S. iniae and A. hydrophila. The results of specific IgM antibody response revealed that the IgM titers against S. iniae and A. hydrophila in the bivalent incorporated (BI) vaccine group were significantly higher (p < 0.05) than those in the bivalent spray (BS) vaccine fish and unvaccinated control fish throughout the experiment. Real-time qPCR results also showed that the gene expression of CD4, MHC-I, MHC-II, IgT, C-type lysozyme, IL-1β, TNF-α, and TGF-β remained significantly higher (p < 0.05) than that of the controls between 24 and 72 h post-infection (hpi) in both mucosal (hindgut) and systemic (spleen and head–kidney) organs of BI vaccinated fish. Furthermore, the highest relative expression of the TGF-β, C-type lysozyme, and IgT genes in the BI vaccinated group was observed in the challenged fish’s spleen (8.8-fold), head kidney (4.4-fold), and hindgut (19.7-fold) tissues, respectively. The present study suggests that the bivalent incorporated (BI) vaccine could effectively improve the immune function and activate both humoral and cell-mediated immunities in vaccinated red tilapia following the bacterial challenges.

Funder

Ministry of Higher Institution via Higher Institution Centre of Excellence

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3