Superiority of Multiple-Joint Space Width over Minimum-Joint Space Width Approach in the Machine Learning for Radiographic Severity and Knee Osteoarthritis Progression

Author:

Cheung James Chung-WaiORCID,Tam Andy Yiu-ChauORCID,Chan Lok-ChunORCID,Chan Ping-Keung,Wen ChunyiORCID

Abstract

We compared the prediction efficiency of the multiple-joint space width (JSW) and the minimum-JSW on knee osteoarthritis (KOA) severity and progression by using a deep learning approach. A convolutional neural network (CNN) with ResU-Net architecture was developed for knee X-ray imaging segmentation and has attained a segmentation efficiency of 98.9% intersection over union (IoU) on the distal femur and proximal tibia. Later, by leveraging the image segmentation, the minimum and multiple-JSWs in the tibiofemoral joint were estimated and then validated by radiologist measurements in the Osteoarthritis Initiative (OAI) dataset using Pearson correlation and Bland–Altman plots. The agreement between the CNN-based estimation and radiologist’s measurement of minimum-JSWs reached 0.7801 (p < 0.0001). The estimated JSWs were deployed to predict the radiographic severity and progression of KOA defined by Kellgren-Lawrence (KL) grades using the XGBoost model. The 64-point multiple-JSWs achieved the best performance in predicting KOA progression within 48 months, with the area-under-receiver operating characteristic curve (AUC) of 0.621, outperforming the commonly used minimum-JSW with 0.554 AUC. We provided a fully automated radiographic assessment tool for KOA with comparable performance to the radiologists and showed that the fine-grained measurement of multiple-JSWs yields superior prediction performance for KOA over the minimum-JSW.

Funder

Research Grant Council of Hong Kong Early Career Scheme

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3