Factors Limiting Radial Growth of Conifers on Their Semiarid Borders across Kazakhstan

Author:

Mapitov Nariman B.1ORCID,Belokopytova Liliana V.2ORCID,Zhirnova Dina F.2,Abilova Sholpan B.3,Ualiyeva Rimma M.1,Bitkeyeva Aliya A.1,Babushkina Elena A.2ORCID,Vaganov Eugene A.45

Affiliation:

1. Department of Biology and Ecology, Toraighyrov University, Pavlodar 140008, Kazakhstan

2. Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia

3. Department of Microbiology and Biotechnology, S. Seifullin Kazakh Agrotechnical University, Astana 010011, Kazakhstan

4. Institute of Ecology and Geography, Siberian Federal University, 660036 Krasnoyarsk, Russia

5. Department of Dendroecology, V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia

Abstract

The forests of Central Asia are biodiversity hotspots at risk from rapid climate change, but they are understudied in terms of the climate–growth relationships of trees. This classical dendroclimatic case study was performed for six conifer forest stands near their semiarid boundaries across Kazakhstan: (1–3) Pinus sylvestris L., temperate forest steppes; (4–5) Picea schrenkiana Fisch. & C.A. Mey, foothills, the Western Tien Shan, southeast; (6) Juniperus seravschanica Kom., montane zone, the Western Tien Shan, southern subtropics. Due to large distances, correlations between local tree-ring width (TRW) chronologies are significant only within species (pine, 0.19–0.50; spruce, 0.55). The most stable climatic response is negative correlations of TRW with maximum temperatures of the previous (from −0.37 to −0.50) and current (from −0.17 to −0.44) growing season. The strength of the positive response to annual precipitation (0.10–0.48) and Standardized Precipitation Evapotranspiration Index (0.15–0.49) depends on local aridity. The timeframe of climatic responses shifts to earlier months north-to-south. For years with maximum and minimum TRW, differences in seasonal maximal temperatures (by ~1–3 °C) and precipitation (by ~12–83%) were also found. Heat stress being the primary factor limiting conifer growth across Kazakhstan, we suggest experiments there on heat protection measures in plantations and for urban trees, alongside broadening the coverage of the dendroclimatic net with accents on the impact of habitat conditions and climate-induced long-term growth dynamics.

Funder

the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3