Abstract
Predatory cone snails (Conus) developed a sophisticated neuropharmacological mechanism to capture prey, escape against other predators, and deter competitors. Their venom’s remarkable specificity for various ion channels and receptors is an evolutionary feat attributable to the venom’s variety of peptide components (conotoxins). However, what caused conotoxin divergence remains unclear and may be related to the role of prey shift. Principal component analysis revealed clustering events within diet subgroups indicating peptide sequence similarity patterns based on the prey they subdue. Molecular analyses using multiple sequence alignment and structural element analysis were conducted to observe the events at the molecular level that caused the subgrouping. Three distinct subgroups were identified. Results showed homologous regions and conserved residues within diet subgroups but divergent between other groups. We specified that these structural elements caused subgrouping in alpha conotoxins that may play a role in function specificity. In each diet subgroup, amino acid character, length of intervening amino acids between cysteine residues, and polypeptide length influenced subgrouping. This study provides molecular insights into the role of prey shift, specifically diet preference, in conotoxin divergence.
Funder
Department of Science and Technology
Engineering Research and Development for Technology
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献