Zoonotic Visceral Leishmaniasis: New Insights on Innate Immune Response by Blood Macrophages and Liver Kupffer Cells to Leishmania infantum Parasites

Author:

Rodrigues Armanda VianaORCID,Valério-Bolas Ana,Alexandre-Pires GraçaORCID,Aires Pereira Maria,Nunes Telmo,Ligeiro Dário,Pereira da Fonseca IsabelORCID,Santos-Gomes GabrielaORCID

Abstract

L. infantum is the aetiological agent of zoonotic visceral leishmaniasis (ZVL), a disease that affects humans and dogs. Leishmania parasites are well adapted to aggressive conditions inside the phagolysosome and can control the immune activation of macrophages (MØs). Although MØs are highly active phagocytic cells with the capacity to destroy pathogens, they additionally comprise the host cells for Leishmania infection, replication, and stable establishment in the mammal host. The present study compares, for the first time, the innate immune response to L. infantum infection of two different macrophage lineages: the blood macrophages and the liver macrophages (Kupffer cells, KC). Our findings showed that L. infantum takes advantage of the natural predisposition of blood-MØs to phagocyte pathogens. However, parasites rapidly subvert the mechanisms of MØs immune activation. On the other hand, KCs, which are primed for immune tolerance, are not extensively activated and can overcome the dormancy induced by the parasite, exhibiting a selection of immune mechanisms, such as extracellular trap formation. Altogether, KCs reveal a different pattern of response in contrast with blood-MØs when confronting L. infantum parasites. In addition, KCs response appears to be more efficient in managing parasite infection, thus contributing to the ability of the liver to naturally restrain Leishmania dissemination.

Funder

Fundação para a Ciência e Tecnologia

Centro de Investigação Interdisciplinar em Sanidade Animal

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference49 articles.

1. Monocytes

2. Exploring the full spectrum of macrophage activation

3. Pathogen Recognition and Innate Immunity

4. Macrophages polarization is mediated by the combination of PRR ligands and distinct inflammatory cytokines;Zhou;Int. J. Clin. Exp. Pathol.,2015

5. NOD-like receptors (NLRs): bona fide intracellular microbial sensors

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3