Global and Conditional Disruption of the Igf-I Gene in Osteoblasts and/or Chondrocytes Unveils Epiphyseal and Metaphyseal Bone-Specific Effects of IGF-I in Bone

Author:

Xing Weirong12,Kesavan Chandrasekhar12,Pourteymoor Sheila1,Mohan Subburaman1234ORCID

Affiliation:

1. VA Loma Linda Healthcare Systems, Musculoskeletal Disease Center, Loma Linda, CA 92357, USA

2. Departments of Medicine, Loma Linda University, Loma Linda, CA 92354, USA

3. Departments of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA

4. Departments of Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA

Abstract

To evaluate the relative importance of IGF-I expression in various cell types for endochondral ossification, we quantified the trabecular bone at the secondary spongiosa and epiphysis of the distal femur in 8–12-week-old male mice with a global knockout of the Igf-I gene, as well as the conditional deletion of Igf-I in osteoblasts, chondrocytes, and osteoblasts/chondrocytes and their corresponding wild-type control littermates. The osteoblast-, chondrocyte-, and osteoblast/chondrocyte-specific Igf-I conditional knockout mice were generated by crossing Igf-I floxed mice with Cre transgenic mice in which Cre expression is under the control of either the Col1α2 or Col2α1 promoter. We found that the global disruption of Igf-I resulted in 80% and 70% reductions in bone size, defined as total volume, at the secondary spongiosa and epiphysis of the distal femur, respectively. The abrogation of Igf-I in Col1α2-producing osteoblasts but not Col2α1-producing chondrocytes decreased bone size by 25% at both the secondary spongiosa and epiphysis. In comparison, the deletion of the Igf-I globally or specifically in osteoblasts or chondrocytes reduced trabecular bone mass by 25%. In contrast, the universal deletion of Igf-I in all cells, but not the conditional disruption of Igf-I in osteoblasts and/or chondrocytes reduced trabecular bone mass in the epiphysis. The reduced trabecular bone mass at the secondary spongiosa in osteoblast- and/or chondrocyte-specific Igf-I conditional knockout mice is caused by the reduced trabecular number and increased trabecular separation. Immunohistochemistry studies found that the expression levels of chondrocyte (COL10, MMP13) and osteoblast (BSP) markers were less in the secondary spongiosa and the epiphyses in the global Igf-I deletion mice. Our data indicate that local and endocrine Igf-I act pleiotropically and in a cell type- and bone compartment-dependent manner in bone.

Funder

National Institutes of Health

Department of Veterans Affairs

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3