Changes in Competitors, Stress Tolerators, and Ruderals (CSR) Ecological Strategies after the Introduction of Shrubs and Trees in Disturbed Semiarid Steppe Grasslands in Hulunbuir, Inner Mongolia

Author:

Kim Eui-Joo1ORCID,Lee Seung-Hyuk2,Kim Se-Hee1ORCID,Park Jae-Hoon1ORCID,You Young-Han1

Affiliation:

1. Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea

2. Garden Promotion Department, Korea Arboreta and Gardens Institute, Sejong-si 30129, Republic of Korea

Abstract

To reveal the changes in the life history characteristics of grassland plants due to vegetation restoration, plant species and communities were analyzed for their competitor, stress tolerator, and ruderal (CSR) ecological strategies after the introduction of woody plants in the damaged steppe grassland and were compared with those in reference sites in Hulunbuir, Inner Mongolia. As a result, it was found that the introduction of the woody plants (Corethrodeneron fruticosum, Caragana microphylla, Populus canadensis, and Pinus sylvestris var. mongolica) into the damaged land greatly increased the plant species diversity and CSR eco-functional diversity as the succession progressed. The plant strategies of the temperate typical steppe (TTS) and woodland steppe (WS) in this Asian steppe are CSR and S/SR, respectively, which means that the plants are adapted to disturbances or stress. As the restoration time elapsed in the damaged lands exhibiting (R/CR) (Corispermum hyssopifolium), the ecological strategies were predicted to change in two ways: (1) →R/CSR (Cynanchum thesioides, Astragalus laxmannii, etc.) → CSR in places (TSS) (Galium verum var. asiaticum, Saussurea japonica, etc.) where only shrubs were introduced, and (2) → S/SR (Allium mongolicum, Ulmus pumila, etc.) → S/SR in sites (WS) (Ulmus pumila, Thalictrum squarrosum, etc.) where trees and shrubs were planted simultaneously. The results mean that the driving force that causes succession in the restoration of temperate grasslands is determined by the life-form (trees/shrubs) of the introduced woody plants. This means that for the restoration of these grasslands to be successful, it is necessary to introduce woody tree species at an early stage.

Funder

Korea Ministry of Environment

Ministry of Education

Kongju National University National Research University Development Program—Presidents Fellowship

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference64 articles.

1. Park, B.K. (1985). Korea’s Grassland Research, Ewhapress.

2. White, R., Murray, S., and Rohweder, M. (2000). Pilot Analysis of Global Ecosystems: Grassland Ecosystems, World Resources Institute.

3. The place of grasslands in the Earth’s cover;Shantz;Ecology,1954

4. Eyre, S.R. (1968). Vegetation and Soils: A World Picture, Routledge. [2nd ed.].

5. Climate change and ecosystems of Asia with emphasis on Inner Mongolia and Mongolia;Angerer;Rangelands,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3