CircRNA Identification and CircRNA–miRNA–mRNA Network in Cynoglossus semilaevis Sexual Size Dimorphism

Author:

Gong Zhihong,Shi Rui,Chen Songlin,Wang NaORCID

Abstract

Sexual size dimorphism (SSD), which is the sexual differences in body size, has been widely reported in various species including fishes. For Chinese tongue sole (Cynoglossus semilaevis), a flatfish exhibiting typically female-biased SSD, little is known for its epigenetic regulation mechanism, especially the role of circRNAs. Here, we identified the differently expressed abundances of circRNAs in females, males, and pseudo-males to explore the potential functions of circRNAs in Chinese tongue sole SSD. In total, 14,745 novel circRNAs were screened, among which 1461 DE circRNAs were identified from the brain, gonad, liver, and muscle in female, male, and pseudo-male individuals. The ceRNA network was subsequently constructed, including 10 circRNAs, 26 mRNAs, and 11 miRNAs. These DE mRNAs were mainly related to the mRNA surveillance pathway, metabolic pathways, and cellular senescence. Importantly, the ceRNA network has revealed that several circRNAs such as novel_circ_004374 and novel_circ_014597 may regulate homeodomain interacting protein kinase 2 (hipk2) expression by sponging miR-130-x. It is also worth exploring whether or how novel_circ_008696 regulates SET Domain Containing 2, histone lysine methyltransferase (setd2), which in turn affects the epigenetic patterns of different sexual individuals. The present study not only enriches the knowledge on the potential roles of circRNA in the physiological process, but also provides new clues for the explanation of fish SSD. In future studies, the precise function and involvement of circRNAs in female-biased SSD will require more efforts.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Shandong Province

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3