The A226D Mutation of OmpC Leads to Increased Susceptibility to β-Lactam Antibiotics in Escherichia coli

Author:

Zhu Jiaming12,Guo Peng12,Zheng Yuting12,Xiang Shiqing12,Zhao Yang12,Liu Xinyu1,Fu Chengzhang3,Zhang Youming1,Xu Hai1,Li Ling1,Wang Wenjia1ORCID,Wang Mingyu1ORCID

Affiliation:

1. State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, China

2. School of Life Sciences, Shandong University, Qingdao 266237, China

3. Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany

Abstract

Bacterial resistance to antibiotics can lead to long-lasting, hard-to-cure infections that pose significant threats to human health. One key mechanism of antimicrobial resistance (AMR) is to reduce the antibiotic permeation of cellular membranes. For instance, the lack of outer membrane porins (OMPs) can lead to elevated AMR levels. However, knowledge on whether mutations of OMPs can also influence antibiotic susceptibility is limited. This work aims to address this question and identified an A226D mutation in OmpC, a trimeric OMP, in Escherichia coli. Surveillance studies found that this mutation is present in 50 E. coli strains for which whole genomic sequences are available. Measurement of minimum inhibition concentrations (MICs) found that this mutation leads to a 2-fold decrease in MICs for β-lactams ampicillin and piperacillin. Further survival assays confirmed the role this mutation plays in β-lactam susceptibility. With molecular dynamics, we found that the A226D mutation led to increased overall flexibility of the protein, thus facilitating antibiotic uptake, and that binding with piperacillin was weakened, leading to easier antibiotic penetration. This work reports a novel mutation that plays a role in antibiotic susceptibility, along with mechanistic studies, and further confirms the role of OMPs in bacterial tolerance to antibiotics.

Funder

National Key Research and Development Program of China

Qingdao Key Health Discipline Development Fund

Key R&D Program of Shandong Province

Shandong Provincial Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3