Performance Prediction Equation for 2000 m Youth Indoor Rowing Using a 100 m Maximal Test

Author:

Silva Luiz Felipe da,de Almeida-Neto Paulo FranciscoORCID,de Matos Dihogo GamaORCID,Riechman Steven E.,de Queiros Victor,de Jesus Joseane Barbosa,Reis Victor Machado,Clemente Filipe ManuelORCID,Miarka BiancaORCID,Aidar Felipe J.ORCID,Dantas Paulo Moreira Silva,Cabral Breno Guilherme de Araújo TinocoORCID

Abstract

Background: The exhaustive series of tests undergone by young athletes of Olympic rowing prior to important competitions imply loads of physical stress that can ultimately impact on mood and motivation, with negative consequences for their training and performance. Thus, it is necessary to develop a tool that uses only the performance of short distances but is highly predictive, offering a time expectancy with high reliability. Such a test must use variables that are easy to collect with high practical applicability in the daily routine of coaches. Objective: The objective of the present study was to develop a mathematical model capable of predicting 2000 m rowing performance from a maximum effort 100 m indoor rowing ergometer (IRE) test in young rowers. Methods: The sample consisted of 12 male rowing athletes in the junior category (15.9 ± 1.0 years). A 100 m time trial was performed on the IRE, followed by a 2000 m time trial 24-h later. Results: The 2000 m mathematical model to predict performance in minutes based on the maximum 100 m test demonstrated a high correlation (r = 0.734; p = 0.006), strong reliability index (ICC: 0.978; IC95%: [0.960; 0.980]; p = 0.001) and was within usable agreement limits (Bland -Altman Agreement: −0.60 to 0.60; 95% CI [−0.65; 0.67]). Conclusion: The mathematical model developed to predict 2000 m performance is effective and has a statistically significant reliability index while being easy to implement with low cost.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3