Carbon Footprint Management by Agricultural Practices

Author:

Ozlu EkremORCID,Arriaga Francisco Javier,Bilen Serdar,Gozukara Gafur,Babur EmreORCID

Abstract

Global attention to climate change issues, especially air temperature changes, has drastically increased over the last half-century. Along with population growth, greater surface temperature, and higher greenhouse gas (GHG) emissions, there are growing concerns for ecosystem sustainability and other human existence on earth. The contribution of agriculture to GHG emissions indicates a level of 18% of total GHGs, mainly from carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Thus, minimizing the effects of climate change by reducing GHG emissions is crucial and can be accomplished by truly understanding the carbon footprint (CF) phenomenon. Therefore, the purposes of this study were to improve understanding of CF alteration due to agricultural management and fertility practices. CF is a popular concept in agro-environmental sciences due to its role in the environmental impact assessments related to alternative solutions and global climate change. Soil moisture content, soil temperature, porosity, and water-filled pore space are some of the soil properties directly related to GHG emissions. These properties raise the role of soil structure and soil health in the CF approach. These properties and GHG emissions are also affected by different land-use changes, soil types, and agricultural management practices. Soil management practices globally have the potential to alter atmospheric GHG emissions. Therefore, the relations between photosynthesis and GHG emissions as impacted by agricultural management practices, especially focusing on soil and related systems, must be considered. We conclude that environmental factors, land use, and agricultural practices should be considered in the management of CF when maximizing crop productivity.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference152 articles.

1. Global Warming Effects

2. Climate Change Report: Experts React, Live Science. 2013, 150 5th Avenue, 9th Floor, New York https://www.livescience.com/40021-ipcc-climate-change-report-reactions.html

3. A definition of ‘carbon footprint’;Wiedmann;Ecol. Econ. Res. Trends,2008

4. A comparative study of carbon footprint and assessment standards

5. Environmental impacts of food consumption in Europe

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3