An Organismal Perspective on the Warburg Effect and Models for Proliferation Studies

Author:

Blackstone Neil W.1ORCID,El Rahmany Weam S.1

Affiliation:

1. Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA

Abstract

Interest in the physiology of proliferation has been generated by human proliferative diseases, i.e., cancers. A vast literature exists on the Warburg effect, which is characterized by aerobic glycolysis, diminished oxygen uptake, and lactate secretion. While these features could be rationalized via the production of biosynthetic precursors, lactate secretion does not fit this paradigm, as it wastes precursors. Forming lactate from pyruvate allows for reoxidizing cytosolic NADH, which is crucial for continued glycolysis and may allow for maintaining large pools of metabolic intermediates. Alternatively, lactate production may not be adaptive, but rather reflect metabolic constraints. A broader sampling of the physiology of proliferation, particularly in organisms that could reoxidize NADH using other pathways, may be necessary to understand the Warburg effect. The best-studied metazoans (e.g., worms, flies, and mice) may not be suitable, as they undergo limited proliferation before initiating meiosis. In contrast, some metazoans (e.g., colonial marine hydrozoans) exhibit a stage in the life cycle (the polyp stage) that only undergoes mitotic proliferation and never carries out meiosis (the medusa stage performs this). Such organisms are prime candidates for general studies of proliferation in multicellular organisms and could at least complement the short-generation models of modern biology.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3