Vegetation Greenness Dynamics in the Western Greater Khingan Range of Northeast China Based on Dendrochronology

Author:

Dong Jibin,Yin Tingting,Liu Hongxiang,Sun Lu,Qin Siqi,Zhang Yang,Liu XiaoORCID,Fan Peixian,Wang Hui,Zheng Peiming,Wang Renqing

Abstract

Understanding the vegetation greenness dynamics in the forest–steppe transition zone is essential for ecosystem management, and in order to study ecological changes in the region. This study provides a valuable record of the vegetation greenness dynamics in the western Greater Khingan Range over the past 193 years (1826–2018) based on tree-ring data represented by the normalized difference vegetation index (NDVI). The reconstructed vegetation greenness dynamics record contains a total of 32 years of high vegetation greenness and 37 years of low vegetation greenness, together occupying 35.8% of the entire reconstructed period (193 years). Climate (precipitation) is the main influence on the vegetation greenness dynamics at this site, but human activities have also had a significant impact over the last few decades. The magnitude, frequency, and duration of extreme changes in vegetation greenness dynamics have increased significantly, with progressively shorter intervals. Analyses targeting human behavior have shown that the density of livestock, agricultural land area, and total population have gradually increased, encroaching on forests and grasslands and reducing the inter-annual variability. After 2002, the government implemented projects to return farmland to its original ecosystems, and for the implementation of new land management practices (which are more ecologically related); as such, the vegetation conditions began to improve. These findings will help us to understand the relationship between climate change and inter- and intra- annual dynamics in northeastern China, and to better understand the impact of human activities on vegetation greenness dynamics.

Funder

Peiming Zheng

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3