Thermal Profiles of Chainsaw Hollows and Natural Hollows during Extreme Heat Events

Author:

Callan Michael N.1ORCID,Krix Dan2,McLean Christopher M.3,Murray Brad R.2ORCID,Webb Jonathan K.2ORCID

Affiliation:

1. Habitat Innovation and Management, 30 Lorimer Street, Llanarth, NSW 2795, Australia

2. School of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia

3. Specialist Research Services, Gosford, NSW 2250, Australia

Abstract

Loss of hollow-bearing trees threatens many hollow-dependent wildlife. To mitigate this process, artificial chainsaw-carved hollows (CHs) are often created in dead trees, yet little is known about their thermal profiles. We measured temperatures inside 13 natural hollows (8 live and 5 dead trees) and 45 CHs (5 live and 40 dead trees) in the central west of NSW, Australia, over the course of 2 summers. Maximum temperatures and daily temperature ranges within natural hollows and artificial hollows were similar in 2017–2018. Hollow temperatures were lower in thicker-walled hollows than in thinner-walled hollows. During the January 2019 heatwave, temperatures inside CHs in dead trees exceeded 4–35 °C higher than the upper limit of the thermal neutral zone of sugar gliders—for 6.2 consecutive days (range 0–9 days). CHs in dead trees provided little buffering from thermal extremes; when air temperatures peaked at 44.6 °C, CHs in dead trees were on average 2.4 °C cooler than ambient (range: 5.5 °C cooler to 1.0 °C hotter than ambient). These results show that CHs created in dead trees may not provide suitable thermal conditions for hollow-dependent marsupials during summer heatwaves. Retention of large live trees, coupled with revegetation, is crucial for conserving hollow-dependent fauna in agricultural landscapes.

Funder

Catchment Action NSW

Wettenhall Environment Trust

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3