Profiling the Spatial Expression Pattern and ceRNA Network of lncRNA, miRNA, and mRNA Associated with the Development of Intermuscular Bones in Zebrafish

Author:

Ye Weidong,Shi Mijuan,Ren Keyi,Liu Yuhang,Duan YouORCID,Cheng Yingyin,Zhang Wanting,Xia Xiao-QinORCID

Abstract

Intermuscular bones (IBs) are small spicule-like bones in the muscular septum of fish, which affect their edible and economic value. The molecular mechanism of IB development is still uncertain. Numerous studies have shown that the ceRNA network, which is composed of mRNA, lncRNA, and miRNA, plays an important regulatory role in bone development. In this study, we compared the mRNA, lncRNA, and miRNA expression profiles in different IB development segments of zebrafish. The development of IBs includes two main processes, which are formation and growth. A series of genes implicated in the formation and growth of IBs were identified through gene differential expression analysis and expression pattern analysis. Functional enrichment analysis showed that the functions of genes implicated in the regulation of the formation and growth of IBs were quite different. Ribosome and oxidative phosphorylation signaling pathways were significantly enriched during the formation of IBs, suggesting that many proteins are required to form IBs. Several pathways known to be associated with bone development have been shown to play an important role in the growth of IBs, including calcium, ECM-receptor interaction, Wnt, TGF-β, and hedgehog signaling pathways. According to the targeting relationship and expression correlation of mRNA, lncRNA, and miRNA, the ceRNA networks associated with the growth of IBs were constructed, which comprised 33 mRNAs, 9 lncRNAs, and 7 miRNAs. This study provides new insight into the molecular mechanism of the development of IBs.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Strate-gic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systematic Identification of Long Noncoding RNAs during Three Key Organogenesis Stages in Zebrafish;International Journal of Molecular Sciences;2024-03-19

2. Effect of runx2b deficiency in intermuscular bones on the regulatory network of lncRNA-miRNA-mRNA;Comparative Biochemistry and Physiology Part D: Genomics and Proteomics;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3