Generation of Herbicide-Resistant Soybean by Base Editing

Author:

Wei Tao12,Jiang Linjian3,You Xiang1,Ma Pengyu2,Xi Zhen2,Wang Ning Ning1ORCID

Affiliation:

1. Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China

2. State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China

3. Key Laboratory of Pest Monitoring and Green Management, MOA, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China

Abstract

Weeds cause the largest yield loss in soybean production. The development of herbicide-resistant soybean germplasm is of great significance for weed control and yield improvement. In this study, we used the cytosine base editor (BE3) to develop novel herbicide-resistant soybean. We have successfully introduced base substitutions in GmAHAS3 and GmAHAS4 and obtained a heritable transgene-free soybean with homozygous P180S mutation in GmAHAS4. The GmAHAS4 P180S mutants have apparent resistance to chlorsulfuron, flucarbazone-sodium, and flumetsulam. In particular, the resistance to chlorsulfuron was more than 100 times that of with wild type TL-1. The agronomic performance of the GmAHAS4 P180S mutants showed no significant differences to TL-1 under natural growth conditions. In addition, we developed allele-specific PCR markers for the GmAHAS4 P180S mutants, which can easily discriminate homozygous, heterozygous mutants, and wild-type plants. This study demonstrates a feasible and effective way to generate herbicide-resistant soybean by using CRISPR/Cas9-mediated base editing.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, Nankai University

Major S&T Projects on the Cultivation of New Varieties of Genetically Modified Organisms

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3