Temperature Response of Metabolic Activity of an Antarctic Nematode

Author:

Robinson Colin MichaelORCID,Hansen Lee D.ORCID,Xue XiaORCID,Adams Byron J.ORCID

Abstract

Because of climate change, the McMurdo Dry Valleys of Antarctica (MCM) have experienced an increase in the frequency and magnitude of summer pulse warming and surface ice and snow melting events. In response to these environmental changes, some nematode species in the MCM have experienced steady population declines over the last three decades, but Plectus murrayi, a mesophilic nematode species, has responded with a steady increase in range and abundance. To determine how P. murrayi responds to increasing temperatures, we measured metabolic heat and CO2 production rates and calculated O2 consumption rates as a function of temperature at 5 °C intervals from 5 to 50 °C. Heat, CO2 production, and O2 consumption rates increase approximately exponentially up to 40 °C, a temperature never experienced in their polar habitat. Metabolic rates decline rapidly above 40 °C and are irreversibly lost at 50 °C due to thermal stress and mortality. Caenorhabditis elegans, a much more widespread nematode that is found in more temperate environments reaches peak metabolic heat rate at just 27 °C, above which it experiences high mortality due to thermal stress. At temperatures from 10 to 40 °C, P. murrayi produces about 6 times more CO2 than the O2 it consumes, a respiratory quotient indicative of either acetogenesis or de novo lipogenesis. No potential acetogenic microbes were identified in the P. murrayi microbiome, suggesting that P. murrayi is producing increased CO2 as a byproduct of de novo lipogenesis. This phenomenon, in conjunction with increased summer temperatures in their polar habitat, will likely lead to increased demand for carbon and subsequent increases in CO2 production, population abundance, and range expansion. If such changes are not concomitant with increased carbon inputs, we predict the MCM soil ecosystems will experience dramatic declines in functional and taxonomic diversity.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Reference38 articles.

1. Pachauri, R.K., and Meyer, L. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

2. Antarctic Climate Change during the Last 50 Years;Turner;Int. J. Climatol.,2005

3. Antarctic Nematode Communities: Observed and Predicted Responses to Climate Change;Nielsen;Polar Biol.,2011

4. Warming of the Antarctic Ice-Sheet Surface since the 1957 International Geophysical Year;Steig;Nature,2009

5. Physical Controls on the Taylor Valley Ecosystem, Antarctica;Fountain;BioScience,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3