Targeted Overexpression of Claudin 11 in Osteoblasts Increases Trabecular Bone Mass by Stimulating Osteogenesis at the Expense of Adipogenesis in Mice

Author:

Xing Weirong12,Pourteymoor Sheila1,Udayakumar Anakha13,Chen Yian1,Mohan Subburaman12ORCID

Affiliation:

1. Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA

2. Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA

3. Graduate School, Loma Linda University, Loma Linda, CA 92354, USA

Abstract

Mice lacking Claudin11 (Cldn11) manifest reduced trabecular bone mass. However, the impact of Cldn11 expression in osteoblasts in vivo remains understudied. Herein, we generated osteoblast-specific transgenic (Tg) mice expressing Cldn11 and characterized their skeletal phenotype. Micro-CT analyses of the distal metaphysis of the femur showed a 50% and a 38% increase in trabecular bone mass in Tg male and female mice, respectively, due to a significant increase in trabecular number and a reduction in trabecular separation. Histomorphometry and serum biomarker studies uncovered that increased trabecular bone mass in Cldn11 Tg mice was the consequence of enhanced bone formation. Accordingly, an abundance of bone formation (Alp, Bsp), but not bone resorption (Ctsk), markers were augmented in the femurs of Cldn11 Tg mice. Since the trabecular bone density is known to inversely correlate with the amount of marrow adipose tissue (MAT), we measured the MAT in osmium-tetroxide-labeled bones by micro-CT scanning. We found 86% less MAT in the proximal tibia of the Tg males. Consistently, the expression levels of the adipogenic markers, adiponectin and leptin, were 50% lower in the femurs of the Tg males. Our data are consistent with the possibility that claudin11 exerts anabolic effects in osteoblastic lineage cells that act via promoting the differentiation of marrow stem cells towards osteoblasts at the expense of adipocytes.

Funder

National Institutes of Health

Department of Veterans Affairs in Loma Linda

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3