An Automated In-Depth Feature Learning Algorithm for Breast Abnormality Prognosis and Robust Characterization from Mammography Images Using Deep Transfer Learning

Author:

Mahmood TariqORCID,Li JianqiangORCID,Pei YanORCID,Akhtar FaheemORCID

Abstract

Background: Diagnosing breast cancer masses and calcification clusters have paramount significance in mammography, which aids in mitigating the disease’s complexities and curing it at early stages. However, a wrong mammogram interpretation may lead to an unnecessary biopsy of the false-positive findings, which reduces the patient’s survival chances. Consequently, approaches that learn to discern breast masses can reduce the number of misconceptions and incorrect diagnoses. Conventionally used classification models focus on feature extraction techniques specific to a particular problem based on domain information. Deep learning strategies are becoming promising alternatives to solve the many challenges of feature-based approaches. Methods: This study introduces a convolutional neural network (ConvNet)-based deep learning method to extract features at varying densities and discern mammography’s normal and suspected regions. Two different experiments were carried out to make an accurate diagnosis and classification. The first experiment consisted of five end-to-end pre-trained and fine-tuned deep convolution neural networks (DCNN). The in-depth features extracted from the ConvNet are also used to train the support vector machine algorithm to achieve excellent performance in the second experiment. Additionally, DCNN is the most frequently used image interpretation and classification method, including VGGNet, GoogLeNet, MobileNet, ResNet, and DenseNet. Moreover, this study pertains to data cleaning, preprocessing, and data augmentation, and improving mass recognition accuracy. The efficacy of all models is evaluated by training and testing three mammography datasets and has exhibited remarkable results. Results: Our deep learning ConvNet+SVM model obtained a discriminative training accuracy of 97.7% and validating accuracy of 97.8%, contrary to this, VGGNet16 method yielded 90.2%, 93.5% for VGGNet19, 63.4% for GoogLeNet, 82.9% for MobileNetV2, 75.1% for ResNet50, and 72.9% for DenseNet121. Conclusions: The proposed model’s improvement and validation are appropriated in conventional pathological practices that conceivably reduce the pathologist’s strain in predicting clinical outcomes by analyzing patients’ mammography images.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3