The Mechanism of the Development and Maintenance of Sexual Dimorphism in the Dioecious Mulberry Plant (Morus alba)

Author:

Shi Yisu12,Ackah Michael12ORCID,Amoako Frank Kwarteng3ORCID,Zhao Mengdi4,van der Puije Grace C.5,Zhao Weiguo12

Affiliation:

1. Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China

2. Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China

3. Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany

4. Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China

5. Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast P.O. Box 5007, Ghana

Abstract

Intersexual differentiation is crucial for the speciation and maintenance of dioecious plants, but the underlying mechanisms, including the genes involved, are still poorly understood. Here, we focused on a typical dioicous plant Morus alba, to explore the molecular footprints relevant to sex evolution by revealing the differentially expressed genes (DEGs) between two sexes and the testing signals of selection for these DEGs. From the results, we found a total of 1543 DEGs. Interestingly, 333 and 66 genes expression were detected only in male and female inflorescences, respectively. Using comparative transcriptomics, the expression of 841 genes were found to be significantly higher in male than in female inflorescences and were mainly enriched in defense-related pathways including the biosynthesis of phenylpropanoids, cutin, suberine and waxes. Meanwhile, the expression of 702 genes was female-biased and largely enriched in pathways related to growth and development, such as carbohydrate metabolism, auxin signaling and cellular responses. In addition, 16.7% and 17.6% signals of selection were significantly detected in female- and male-biased genes, respectively, suggesting their non-negligible role in evolution. Our findings expanded the understanding of the molecular basis of intersexual differentiation and contribute to further research on sex evolution in dioecious plants.

Funder

Key R&D Program of Guangxi

Natural Science Foundation of Jiangsu Province for Youths

earmarked fund for CARS-18

National Key R&D Program of China

Science and Technology Partnership Program

Ministry of Science and Technology of China, Zhenjiang Science and Technology support project

Crop Germplasm Resources Protection Project of the Agriculture Ministry

National Infrastructure for Crop Germplasm Resources

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3