Abstract
Breast cancer is the second leading cause of death in women, thus a reliable prognostic model for overall survival (OS) in breast cancer is needed to improve treatment and care. Ferroptosis is an iron-dependent cell death. It is already known that siramesine and lapatinib could induce ferroptosis in breast cancer cells, and some ferroptosis-related genes were closely related with the outcomes of treatments regarding breast cancer. The relationship between these genes and the prognosis of OS remains unclear. The data of gene expression and related clinical information was downloaded from public databases. Based on the TCGA-BRCA cohort, an 8-gene prediction model was established with the least absolute shrinkage and selection operator (LASSO) cox regression, and this model was validated in patients from the METABRIC cohort. Based on the median risk score obtained from the 8-gene model, patients were stratified into high- or low-risk groups. Cox regression analyses identified that the risk score was an independent predictor for OS. The findings from CIBERSORT and ssGSEA presented noticeable differences in enrichment scores for immune cells and pathways between the abovementioned two risk groups. To sum up, this prediction model has potential to be widely applied in future clinical settings.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Guangdong Province
Young Teacher Foundation of Sun Yat-sen University
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献