Two Independently Comparative Transcriptome Analyses of Hemocytes Provide New Insights into Understanding the Disease-Resistant Characteristics of Shrimp against Vibrio Infection

Author:

Li Shihao12ORCID,Zhang Keke13,Du Wenran14,Li Fuhua125ORCID

Affiliation:

1. CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

2. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China

5. The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China

Abstract

Vibrio parahaemolyticus carrying plasmid encoding toxins PirA and PirB is one of the causative agents leading to the severe disease of AHPND in shrimp aquaculture. However, there is a lack of deep understanding of the host-resistant characteristics against V. parahaemolyticus infection. Here, we established a method to obtain hemocytes from shrimp with different V. parahaemolyticus-resistant abilities and performed comparative transcriptome analysis on the expression profiles at the background level of hemocytes from shrimp in two independent populations. Principal component analysis and sample clustering results showed that samples from the same population had a closer relationship than that from shrimp with similar disease-resistant abilities. DEGs analysis revealed that the number of DEGs between two populations was much more than that between V. parahaemolyticus-resistant and susceptible shrimp. A total of 31 DEGs and 5 DEGs were identified from the comparison between V. parahaemolyticus-resistant and susceptible shrimp from populations 1 and 2, respectively. DEGs from population 1 were mainly cytoskeleton-related genes, metabolic related genes, and immune related genes. Although there was no DEGs overlap between two comparisons, DEGs from population 2 also included genes related to cytoskeleton and metabolism. The data suggest that these biological processes play important roles in disease resistance, and they could be focused by comprehensive analysis of multiple omics data. A new strategy for screening key biological processes and genes related to disease resistance was proposed based on the present study.

Funder

Key Program of National Natural Science Foundation of China

General Program of National Natural Science Foundation of China

Taishan Scholars Program

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3