Comparing the Performance of CMCC-BioClimInd and WorldClim Datasets in Predicting Global Invasive Plant Distributions

Author:

Zhang Feixue12,Wang Chunjing2,Zhang Chunhui1,Wan Jizhong1ORCID

Affiliation:

1. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China

2. College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China

Abstract

Species distribution modeling (SDM) has been widely used to predict the distribution of invasive plant species based on bioclimatic variables. However, the specific selection of these variables may affect the performance of SDM. This investigation elucidates a new bioclimate variable dataset (i.e., CMCC-BioClimInd) for its use in SDM. The predictive performance of SDM that includes WorldClim and CMCC-BioClimInd was evaluated by AUC and omission rate and the explanatory power of both datasets was assessed by the jackknife method. Furthermore, the ODMAP protocol was used to record CMCC-BioClimInd to ensure reproducibility. The results indicated that CMCC-BioClimInd effectively simulates invasive plant species’ distribution. Based on the contribution rate of CMCC-BioClimInd to the distribution of invasive plant species, it was inferred that the modified and simplified continentality and Kira warmth index from CMCC-BioClimInd had a strong explanatory power. Under the 35 bioclimatic variables of CMCC-BioClimInd, alien invasive plant species are mainly distributed in equatorial, tropical, and subtropical regions. We tested a new bioclimate variable dataset to simulate the distribution of invasive plant species worldwide. This method has great potential to improve the efficiency of species distribution modeling, thereby providing a new perspective for risk assessment and management of global invasive plant species.

Funder

Project of Qinghai Science and Technology Department

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3