Comparative Transcriptome Analysis of the Response to Vibrio parahaemolyticus and Low-Salinity Stress in the Swimming Crab Portunus trituberculatus

Author:

Sun Dongfang1,Lv Jianjian12,Li Yukun1,Wu Jie1,Liu Ping12,Gao Baoquan12

Affiliation:

1. National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China

2. Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China

Abstract

Vibrio parahaemolyticus is one of the main pathogenic bacteria of Portunus trituberculatus and causes mass mortality of P. trituberculatus in aquaculture. In addition, low-salinity stimulation makes P. trituberculatus more susceptible to V. parahaemolyticus infections. In order to elucidate the molecular mechanism of resistance to V. parahaemolyticus in P. trituberculatus, comparative transcriptomic analysis of blood cells stimulated by low salinity and V. parahaemolyticus was carried out in this study. Transcriptome sequencing of low-salinity stress and pathogen infection at different time points was completed using Illumina sequencing technology. A total of 5827, 6432, 5362 and 1784 differentially expressed genes (DEGs) involved in pathways related to ion transport and immunoregulation were found under low-salinity stress at 12, 24, 48 and 72 h compared with the control at 0 h. In contrast, 4854, 4814, 5535 and 6051 DEGs, which were significantly enriched in Toll and IMD signaling pathways, were found at 12, 24, 48 and 72 h compared with the control at 0 h under V. parahaemolyticus infection. Among them, 952 DEGs were shared in the two treatment groups, which were mainly involved in apoptosis and Hippo signaling pathway. Cluster analysis screened 103 genes that were differentially expressed in two factors that were negatively correlated, including immunoglobulin, leukocyte receptor cluster family, scavenger receptor, macroglobulin and other innate-immune-related genes. These results provide data support for the analysis of the mechanisms of immunity to V. parahaemolyticus under low-salinity stress in P. trituberculatus and help to elucidate the molecular mechanisms by which environmental factors affect immunity.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Central Public-interest Scientific Institution Basal Research Fund, CAFS

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3