Keystone Taxa and Predictive Functional Analysis of Sphagnum palustre Tank Microbiomes in Erxianyan Peatland, Central China

Author:

Man BaiyingORCID,Xiang Xing,Zhang Junzhong,Cheng Gang,Zhang Chao,Luo Yang,Qin Yangmin

Abstract

Sphagnum is a fundamental ecosystem of engineers, including more than 300 species around the world. These species host diverse microbes, either endosymbiotic or ectosymbiotic, and are key to carbon sequestration in peatland ecosystems. However, the linkages between different types of Sphagnum and the diversity and ecological functions of Sphagnum-associated microbiomes are poorly known, and so are their joint responses to ecological functions. Here, we systematically investigated endophytes in Sphagnum palustre via next-generation sequencing (NGS) techniques in the Erxianyan peatland, central China. The total bacterial microbiome was classified into 38 phyla and 55 classes, 122 orders and 490 genera. The top 8 phyla of Proteobacteria (33.69%), Firmicutes (11.94%), Bacteroidetes (9.42%), Actinobacteria (6.53%), Planctomycetes (6.37%), Gemmatimonadetes (3.05%), Acidobacteria (5.59%) and Cyanobacteria (1.71%) occupied 78.31% of total OTUs. The core microbiome of S. palustre was mainly distributed mainly in 7 phyla, 9 classes, 15 orders, 22 families and 43 known genera. There were many differences in core microbiomes compared to those in the common higher plants. We further demonstrate that the abundant functional groups have a substantial potential for nitrogen fixation, carbon cycle, nitrate metabolism, sulfate respiration and chitinolysis. These results indicate that potential ecological function of Sphagnum palustre in peatlands is partially rooted in its microbiomes, and that incorporating into functional groups of Sphagnum-associated microbiomes can promote mechanistic understanding of Sphagnum ecology in subalpine peatlands.

Funder

National Natural Science Foundation of China

Scientific Research Staring Foundation for Scholars of Shangrao Normal University

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3