White LED Lighting Increases the Root Productivity of Panax ginseng C. A. Meyer in a Hydroponic Cultivation System of a Plant Factory

Author:

Kim Se-Hee1ORCID,Park Jae-Hoon1ORCID,Kim Eui-Joo1,Lee Jung-Min1,Park Ji-Won1,Kim Yoon-Seo1,Kim Gyu-Ri1,Lee Ju-Seon1,Lee Eung-Pill2,You Young-Han1

Affiliation:

1. Department of Biological Science, Kongju National University, Gongju 32588, Republic of Korea

2. National Ecosystem Survey Team, National Institute of Ecology, Seocheon 33657, Republic of Korea

Abstract

To identify effective light spectra for increasing the productivity of Panax ginseng, we conducted experiments in a controlled environment using a hydroponic cultivation system in a plant factory. We investigated the effect of single LEDs (red, blue, and yellow) and mixed LEDs (red + blue and red + blue + white). The relationships between four light spectra (red, blue, yellow, and white) and physiological responses (net photosynthetic rate, stomata conductance, transpiration rate, and intercellular CO2 partial pressure), as well as growth responses (shoot and root biomass), were analyzed using multivariate statistical analysis. Among the four physiological response variables, shoot biomass was not increased by any pathway, and root biomass was increased only by the intercellular CO2 partial pressure. Red and yellow light increased shoot biomass, whereas white light promoted an increase in the net photosynthetic rate and enhanced root biomass. In contrast, blue light was less effective than the other light spectra in increasing both shoot and root biomass. Therefore, red and yellow light are the most effective light spectra for increasing shoot biomass and white light is effective for increasing root biomass in a plant factory that uses artificial LED lighting. Furthermore, the intercellular CO2 partial pressure is an important physiological variable for increasing the root biomass of P. ginseng.

Funder

Korea Ministry of Environment

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3