Plant Traits Guide Species Selection in Vegetation Restoration for Soil and Water Conservation

Author:

Fu Denggao12ORCID,Wu Xiaoni3,Hu Lianyu12,Ma Xudong12,Shen Chunjie12,Shang Huaye12,Huang Gongning12,He Yongjian12,Duan Changqun12ORCID

Affiliation:

1. Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China

2. Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management, Kunming 650091, China

3. School of Agronomy and Life Sciences, Kunming University, Kunming 650214, China

Abstract

Great efforts have been made to improve the soil and water conservation capacity by restoring plant communities in different climatic and land-use types. However, how to select suitable species from local species pools that not only adapt to different site environments, but also achieve certain soil and water conservation capacities is a great challenge in vegetation restoration for practitioners and scientists. So far, little attention has been paid to plant functional response and effect traits related to environment resource and ecosystem functions. In this study, together with soil properties and ecohydrological functions, we measured the seven plant functional traits for the most common species in different restoration communities in a subtropical mountain ecosystem. Multivariate optimization analyses were performed to identify the functional effect types and functional response types based on specific plant traits. We found that the community-weighted means of traits differed significantly among the four community types, and the plant functional traits were strongly linked with soil physicochemical properties and ecohydrological functions. Based on three optimal effect traits (specific leaf area, leaf size, and specific root length) and two response traits (specific leaf area and leaf nitrogen concentration), seven functional effect types in relation to the soil and water conservation capacity (interception of canopy and stemflow, maximum water-holding capacity of litter, maximum water-holding capacity of soil, soil surface runoff, and soil erosion) and two plant functional response types to soil physicochemical properties were identified. The redundancy analysis showed that the sum of all canonical eigenvalues only accounted for 21.6% of the variation in functional response types, which suggests that community effects on soil and water conservation cannot explain the overall structure of community responses related to soil resources. The eight overlapping species between the plant functional response types and functional effect types were ultimately selected as the key species for vegetation restoration. Based on the above results, we offer an ecological basis for choosing the appropriate species based on functional traits, which may be very helpful for practitioners involved in ecological restoration and management.

Funder

National Natural Science Foundation of China

Yunnan Fundamental Research Projects

Special Basic Cooperative Programs of Yunnan Provincial Undergraduate Universities’ Association

Undergraduate Training Program on Innovation and Entrepreneurship

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3