In Silico Studies on Sennidines—Natural Dianthrones from Senna

Author:

Szymanski SebastianORCID,Majerz Irena

Abstract

The rapid development of technology allows for more accurate research of biological systems with the use of in silico methods. One of the tools is the quantum-chemical method used for determining the structure, properties and interactions of molecules of great pharmacological importance. The accuracy of theoretical models is increasing and can be a real help in biology, chemistry and pharmacy. The aim of the study is to determine the spatial structure and intramolecular interactions of sennidines—natural pharmaceutical substances present in Senna species. Calculations carried out in the gas-phase and in the solvent model, compared with the available experimental data indicate the possibility of sennidines to form conformers. QTAIM and NCI analysis suggests the presence of many intramolecular interactions in the sennidin structure. Taking into account the lowest energy optimized structure, it can be predicted that the sennidin in the gauche conformation will be present in the plant material. The single C-C bond connecting the anthrone moieties is elongated and its reduced Bond Dissociation Energy (BDE) could be the cause of an easy breakdown of the sennidin molecule into monoanthrones. This work contains data on theoretical, vibrational and electron excitation spectra, which can be used in the analysis of experimental samples.

Publisher

MDPI AG

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3