RBF Neural Network Fractional-Order Sliding Mode Control with an Application to Direct a Three Matrix Converter under an Unbalanced Grid

Author:

Yang Xuhong,Fang Haoxu,Wu Yaxiong,Jia Wei

Abstract

This paper presents a fractional-order sliding mode control scheme based on an RBF neural network (RBFFOSMC) for a direct three matrix converter (DTMC) operating under unbalanced grid voltages. The RBF neural network (RBF NN) is designed to approximate a nonlinear fractional-order sliding mode controller. The proposed method aims to achieve constant active power whilst maintaining a near unity input power factor. First, an opportune reference current is accurately generated according to the reference power and the RBFFOSMC is designed in a dq reference frame to achieve a perfect tracking of the input current reference. An almost constant active power, free of low-frequency ripples, is then supplied from the grid after compensating for the output voltage. Simulation and experimental studies prove the feasibility and effectiveness of the proposed control method.

Funder

Shanghai 2021 "Science and Technology Innovation Action Plan" Science and Technology Support for Carbon Neutralization

National Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3