Compressed Sensing Real-Time Cine Reduces CMR Arrhythmia-Related Artifacts

Author:

Longère BenjaminORCID,Allard Paul-Edouard,Gkizas Christos V,Coisne AugustinORCID,Hennicaux Justin,Simeone Arianna,Schmidt Michaela,Forman ChristophORCID,Toupin Solenn,Montaigne DavidORCID,Pontana FrançoisORCID

Abstract

Background and objective: Cardiac magnetic resonance (CMR) is a key tool for cardiac work-up. However, arrhythmia can be responsible for arrhythmia-related artifacts (ARA) and increased scan time using segmented sequences. The aim of this study is to evaluate the effect of cardiac arrhythmia on image quality in a comparison of a compressed sensing real-time (CSrt) cine sequence with the reference prospectively gated segmented balanced steady-state free precession (Cineref) technique regarding ARA. Methods: A total of 71 consecutive adult patients (41 males; mean age = 59.5 ± 20.1 years (95% CI: 54.7–64.2 years)) referred for CMR examination with concomitant irregular heart rate (defined by an RR interval coefficient of variation >10%) during scanning were prospectively enrolled. For each patient, two cine sequences were systematically acquired: first, the reference prospectively triggered multi-breath-hold Cineref sequence including a short-axis stack, one four-chamber slice, and a couple of two-chamber slices; second, an additional single breath-hold CSrt sequence providing the same slices as the reference technique. Two radiologists independently assessed ARA and image quality (overall, acquisition, and edge sharpness) for both techniques. Results: The mean heart rate was 71.8 ± 19.0 (SD) beat per minute (bpm) (95% CI: 67.4–76.3 bpm) and its coefficient of variation was 25.0 ± 9.4 (SD) % (95% CI: 22.8–27.2%). Acquisition was significantly faster with CSrt than with Cineref (Cineref: 556.7 ± 145.4 (SD) s (95% CI: 496.7–616.7 s); CSrt: 23.9 ± 7.9 (SD) s (95% CI: 20.6–27.1 s); p < 0.0001). A total of 599 pairs of cine slices were evaluated (median: 8 (range: 6–14) slices per patient). The mean proportion of ARA-impaired slices per patient was 85.9 ± 22.7 (SD) % using Cineref, but this was figure was zero using CSrt (p < 0.0001). The European CMR registry artifact score was lower with CSrt (median: 1 (range: 0–5)) than with Cineref (median: 3 (range: 0–3); p < 0.0001). Subjective image quality was higher in CSrt than in Cineref (median: 3 (range: 1–3) versus 2 (range: 1–4), respectively; p < 0.0001). In line, edge sharpness was higher on CSrt cine than on Cineref images (0.054 ± 0.016 pixel−1 (95% CI: 0.050–0.057 pixel−1) versus 0.042 ± 0.022 pixel−1 (95% CI: 0.037–0.047 pixel−1), respectively; p = 0.0001). Conclusion: Compressed sensing real-time cine drastically reduces arrhythmia-related artifacts and thus improves cine image quality in patients with arrhythmia.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3