Secure Transmission of Terahertz Signals with Multiple Eavesdroppers

Author:

He Yuqian,Zhang Lu,Liu Shanyun,Zhang Hongqi,Yu Xianbin

Abstract

The terahertz (THz) band is expected to become a key technology to meet the ever-increasing traffic demand for future 6G wireless communications, and a lot of efforts have been paid to develop its capacity. However, few studies have been concerned with the transmission security of such ultra-high-speed THz wireless links. In this paper, we comprehensively investigate the physical layer security (PLS) of a THz communication system in the presence of multiple eavesdroppers and beam scattering. The method of moments (MoM) was adopted so that the eavesdroppers’ channel influenced by the PEC can be characterized. To establish a secure link, the traditional beamforming and artificial noise (AN) beamforming were considered as transmission schemes for comparison. For both schemes, we analyzed their secrecy transmission probability (STP) and ergodic secrecy capacity (ESC) in non-colluding and colluding cases, respectively. Numerical results show that eavesdroppers can indeed degrade the secrecy performance by changing the size or the location of the PEC, while the AN beamforming technique can be an effective candidate to counterbalance this adverse effect.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3