Study on Leakage Effect Factors of Two-Stroke Micro Free Piston Swing Engine

Author:

Miao Shujing,Liu Haiyang,Cen Haitang,Liu Jiang,Li Huaqiang,Xu Gang

Abstract

The two-stroke micro free piston swing engine (MFPSE) is a portable power device. Its seal performance plays an important role in the dynamic properties and efficiency of microengines. The present work established the leakage model of the two-stroke micro free piston swing engine by utilizing the compressible flow Reynolds Navier–Stokes equation. The obtained nondimensional mass leakage was related to the seal gap height, seal inlet pressure, size factor and compression ratio. Simulation investigated how the different seal gap heights and size factors affected the pressure, temperature and mass leakage of micro engines. The results showed that when the seal gap height of the combustion chamber increased, the maximum pressure and cycle power declined, obviously. However, the maximum temperature was scarcely affected. The mass leakage was not greatly impacted when the compression ratio was less than 5. However, the mass leakage dramatically increased when the seal gap was more than 10 μm or the size factor was less than 0.4. The investigation revealed these mass leakage effect factors and provided a guide for the seal and structure design of the two-stroke micro free piston swing engine.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference27 articles.

1. Micro and Mesoscale Combustion;Kaoru;Proc. Combust. Inst.,2011

2. Theoretical limits of scaling-down internal combustion engines

3. Diagnosis and Improvement of Combustion Characteristics of Methanol Miniature Reciprocating Piston Internal Combustion Engine

4. Micro-heat engines, gas turbines, and rocket engines-the MIT micro engine project;Epstein;Proceedings of the 28th AIAA Fluid Dynamic Conference,1997

5. Design and fabrication of a silicon-based MEMS rotary engine;Fu;Proceedings of the 2001 ASME International Mechanical Engineering Congress and Exposition,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3