A 3D Miniaturized Glass Magnetic-Active Centrifugal Micropump Fabricated by SLE Process and Laser Welding

Author:

Kim Jeongtae,Kim SungilORCID,Choi Jiyeon,Koo ChiwanORCID

Abstract

A miniaturized pump to manipulate liquid flow in microchannels is the key component of microfluidic devices. Many researchers have demonstrated active microfluidic pumps, but most of them still required additional large peripherals to operate their micropumps. In addition, those micropumps were made of polymer materials so that their application may be limited to a variety of fields that require harsh conditions at high pressures and temperatures or organic solvents and acid/base. In this work, we present a 3D miniaturized magnetic-driven glass centrifugal pump for microfluidic devices. The pump consists of a volute structure and a 3D impeller integrated with two magnet disks of Φ1 mm. The 3D pump structure was 13 mm × 10.5 mm × 3 mm, and it was monolithically fabricated in a fused silica sheet by selective laser-induced etching (SLE) technology using a femtosecond laser. The pump operation requires only one motor rotating two magnets. It was Φ42 mm × 54 mm and powered by a battery. To align the shaft of the motor to the center of the 3D glass pump chip, a housing containing the motor and the chip was fabricated, and the overall size of the proposed micropump device was 95 mm × 70 mm × 75 mm. Compared with other miniaturized pumps, ours was more compact and portable. The output pressure of the fabricated micropump was between 215 Pa and 3104 Pa, and the volumetric flow rate range was 0.55 mL/min and 7.88 mL/min. The relationship between the motor RPM and the impeller RPM was analyzed, and the flow rate was able to be controlled by the RPM. With its portability, the proposed pump can be applied to produce an integrated and portable microfluidic device for point-of-care analysis.

Funder

Hanbat National University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3