Perfect Codes over Non-Prime Power Alphabets: An Approach Based on Diophantine Equations

Author:

Cazorla García Pedro-José1ORCID

Affiliation:

1. Department of Mathematics, University of Manchester, Manchester M13 9PL, UK

Abstract

Perfect error-correcting codes allow for an optimal transmission of information while guaranteeing error correction. For this reason, proving their existence has been a classical problem in both pure mathematics and information theory. Indeed, the classification of the parameters of e-error correcting perfect codes over q-ary alphabets was a very active topic of research in the late 20th century. Consequently, all parameters of perfect e-error-correcting codes were found if e≥3, and it was conjectured that no perfect 2-error-correcting codes exist over any q-ary alphabet, where q>3. In the 1970s, this was proved for q a prime power, for q=2r3s and for only seven other values of q. Almost 50 years later, it is surprising to note that there have been no new results in this regard and the classification of 2-error-correcting codes over non-prime power alphabets remains an open problem. In this paper, we use techniques from the resolution of the generalised Ramanujan–Nagell equation and from modern computational number theory to show that perfect 2-error-correcting codes do not exist for 172 new values of q which are not prime powers, substantially increasing the values of q which are now classified. In addition, we prove that, for any fixed value of q, there can be at most finitely many perfect 2-error-correcting codes over an alphabet of size q.

Funder

University of Manchester

Publisher

MDPI AG

Reference29 articles.

1. Error-Correcting Codes for Semiconductor Memory Applications: A State-of-the-Art Review;Chen;IBM J. Res. Dev.,1984

2. A mathematical theory of communication;Shannon;Bell Syst. Tech. J.,1948

3. Hill, R. (1986). A First Course in Coding Theory, Oxford University Press. [2nd ed.].

4. On perfect codes over non prime power alphabets;Heden;Contemp. Math.,2010

5. On the nonexistence of perfect codes over finite fields;SIAM J. Appl. Math.,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3