Health Status Detection for Motor Drive Systems Based on Generalized-Layer-Added Principal Component Analysis

Author:

Chen Qing1ORCID,Sun Ruiwang1,Diao Naizhe2ORCID

Affiliation:

1. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China

2. The School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

Abstract

Health status detection for motor drive systems includes detecting the working status of the motor and diagnosing open-circuit (OC) faults in the inverter. This paper proposes a generalized-layer-added principle component analysis (GPCA) to determine the load-up/load-shedding status of a motor and diagnose faults in its inverter. Most current methods for detecting OC faults are constrained by changes in the current amplitude and frequency, potentially leading to misjudgments during load-up/load-shedding transient states. The proposed method addresses this issue. Initially, this paper employs a homogenization method to process current data, eliminating the impact of transient processes during motor load-up/load-shedding states on inverter fault diagnosis. Subsequently, the fast Fourier transform (FFT) is used to extract the frequency domain characteristics of the data. If the PCA method is trained with a singular matrix, this can lead to an unreliable result. This paper introduces a generalization layer based on the PCA method, leading to the GPCA method, which enables training with singular matrices. The GPCA method is then developed to compute data features. By presetting thresholds and utilizing the prediction error value and contribution rate index of the GPCA method, the relevant state of the motor drive system can be determined. Finally, through simulations and experiments, it has been demonstrated that the method, using data from the stable working state, can effectively detect the working status of a motor and diagnose OC faults in its inverter, with a diagnostic time of 0.05 current cycles.

Funder

Science and Technology Project of Hebei Education Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3