SSRES: A Student Academic Paper Social Recommendation Model Based on a Heterogeneous Graph Approach

Author:

Guo Yiyang1,Zhou Zheyu1

Affiliation:

1. Shanghai Engineering Research Center of Intelligent and Big Data, Shanghai Normal University, Shanghai 201418, China

Abstract

In an era overwhelmed by academic big data, students grapple with identifying academic papers that resonate with their learning objectives and research interests, due to the sheer volume and complexity of available information. This study addresses the challenge by proposing a novel academic paper recommendation system designed to enhance personalized learning through the nuanced understanding of academic social networks. Utilizing the theory of social homogeneity, the research first constructs a sophisticated academic social network, capturing high-order social relationships, such as co-authorship and advisor–advisee connections, through hypergraph modeling and advanced network representation learning techniques. The methodology encompasses the development and integration of a hypergraph convolutional neural network and a contrastive learning framework to accurately model and recommend academic papers, focusing on aligning with students’ unique preferences and reducing reliance on sparse interaction data. The findings, validated across multiple real-world datasets, demonstrate a significant improvement in recommendation accuracy, particularly in addressing the cold-start problem and effectively mapping advisor–advisee relationships. The study concludes that leveraging complex academic social networks can substantially enhance the personalization and precision of academic paper recommendations, offering a promising avenue for addressing the challenges of academic information overload and fostering more effective personalized learning environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3