Double Exponential Ratio Estimator of a Finite Population Variance under Extreme Values in Simple Random Sampling

Author:

Daraz Umer1ORCID,Wu Jinbiao1ORCID,Albalawi Olayan2ORCID

Affiliation:

1. School of Mathematics and Statistics, Central South University, Changsha 410017, China

2. Department of Statistics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia

Abstract

This article presents an improved class of efficient estimators aimed at estimating the finite population variance of the study variable. These estimators are especially useful when we have information about the minimum/maximum values of the auxiliary variable within a framework of simple random sampling. The characteristics of the proposed class of estimators, including bias and mean squared error (MSE) under simple random sampling are derived through a first-order approximation. To assess the performance and validate the theoretical outcomes, we conduct a simulation study. Results indicate that the proposed class of estimators has lower MSEs as compared to other existing estimators across all simulation scenarios. Three datasets are used in the application section to emphasize the effectiveness of the proposed class of estimators over conventional unbiased variance estimators, ratio and regression estimators, and other existing estimators.

Funder

National Social Science Foundation of China

Publisher

MDPI AG

Reference23 articles.

1. A note on improving the ratio method of estimation through linear transformation using certain known population parameters;Mohanty;Sankhyā Indian J. Stat. Ser.,1995

2. Some improved ratio, product, and regression estimators of finite population mean when using minimum and maximum values;Khan;Sci. World J.,2013

3. Estimation of finite population mean by using minimum and maximum values in stratified random sampling;Daraz;J. Mod. Appl. Stat. Methods,2018

4. Some estimator types for population mean using linear transformation with the help of the minimum and maximum values of the auxiliary variable;Cekim;Hacet. J. Math. Stat.,2017

5. Chatterjee, S., and Hadi, A.S. (2013). Regression Analysis by Example, John Wiley & Sons.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3